Deriving " $\tau_{\mathrm{p}}=\mathbf{6 3 . 2} \%$ of Process Step Response" Rule

By Doug Cooper

Chemical, Materials and Biomolecular Engineering
University of Connecticut, Unit 3222
Storrs, CT 06269-3222
Email: cooper@engr.uconn.edu
Academic: http://www.engr.uconn.edu/control
Editor: http://www.controlguru.com
To derive the "time constant, $\tau_{P}=63.2 \%$ of Process Step Response" rule used in model fitting, we must solve a linear first order ordinary differential equation (ODE):

Figure 1 - Response of true first order process to a step change in controller output
The figure above shows the open loop step response of a true first order process model:

$$
\tau_{P} \frac{d y(t)}{d t}+y(t)=K_{P} u(t) \quad \text { where } \quad y(0)=0
$$

As shown in Fig 1, the measured process variable, $y(t)$, and controller output signal, $u(t)$, are initially at steady state with $y(t)=u(t)=0$ for $t<0$. Other parameters include the process time constant, τ_{P}, and process gain, K_{P}.

At time $t=0$, the controller output is stepped to $u(t)=A$, where it remains for the duration of the experiment. Hence, the first order model becomes

$$
\tau_{P} \frac{d y(t)}{d t}+y(t)=A K_{P}
$$

To solve this ODE, rearrange as:

$$
\frac{d y(t)}{d t}+\frac{1}{\tau_{P}} y(t)=\frac{A K_{P}}{\tau_{P}}
$$

First compute the integrating factor, $\mu=e^{\int\left(1 / \tau_{p}\right) d t}=e^{t / \tau_{p}}$. Solving the ODE using this integrating factor yields

$$
\begin{aligned}
y(t) & =\frac{1}{e^{t / \tau_{P}}}\left[\int e^{t / \tau_{P}}\left(\frac{A K_{P}}{\tau_{P}}\right) d t+c_{1}\right] \\
& =e^{-t / \tau_{P}}\left[\frac{A K_{P}}{\tau_{P}} \int e^{t / \tau_{P}} d t+c_{1}\right]
\end{aligned}
$$

Recall that

$$
\int e^{a x} d x=\frac{1}{a} e^{a x}
$$

and thus

$$
\int e^{t / \tau_{P}} d t=\tau_{P} e^{t / \tau_{P}}
$$

so

$$
\begin{aligned}
y(t) & =e^{-t / \tau_{P}}\left[A K_{P} e^{t / \tau_{P}}+c_{1}\right] \\
& =A K_{P}+c_{1} e^{-t / \tau_{P}}
\end{aligned}
$$

Next, apply the initial condition: @ $t=0, y=0,0=A K_{P}+c_{1}$, and thus $c_{1}=-A K_{P}$.

Substituting and rearranging, we obtain the solution to the ODE:

$$
y(t)=A K_{P}\left[1-e^{-t / \tau_{P}}\right]
$$

After the passage of one time constant, time $t=\tau_{P}$, the solution becomes

$$
y\left(\tau_{P}\right)=A K_{P}\left[1-e^{-\tau_{P} / \tau_{P}}\right]=A K_{P}\left[1-e^{-1}\right]
$$

Therefore, the measured process variable step response at time $t=\tau_{P}$ is

$$
y\left(\tau_{P}\right)=0.632 A K_{P}
$$

As we set out to show, at time t equals one time constant, τ_{P}, the measured process variable, $\mathrm{y}(\mathrm{t})$, will have traveled to 63.2% of the total change that it will ultimately experience.

